3 research outputs found

    Exploring the impact of different cost heuristics in the allocation of safety integrity levels

    Get PDF
    Contemporary safety standards prescribe processes in which system safety requirements, captured early and expressed in the form of Safety Integrity Levels (SILs), are iteratively allocated to architectural elements. Different SILs reflect different requirements stringencies and consequently different development costs. Therefore, the allocation of safety requirements is not a simple problem of applying an allocation "algebra" as treated by most standards; it is a complex optimisation problem, one of finding a strategy that minimises cost whilst meeting safety requirements. One difficulty is the lack of a commonly agreed heuristic for how costs increase between SILs. In this paper, we define this important problem; then we take the example of an automotive system and using an automated approach show that different cost heuristics lead to different optimal SIL allocations. Without automation it would have been impossible to explore the vast space of allocations and to discuss the subtleties involved in this problem

    FPGA Based Powertrain Control for Electric Vehicles

    Get PDF
    In this article an FPGA based solution for the advance control of multi-motor EVs was proposed. The design was build around a powertrain IP Core library containing the most relevant functions for the EV operation: motor torque and flux regulation, energy loss minimization and vehicle safety. Due to the parallel, modularity and reconfigurability features of FPGAs, this library can be reused in the development of several control architectures that best suits the EV powertrain configuration (single or multi-motor) and functional requirements. As proof of concept, the powertrain library was employed in the design of minimal control system for a bi-motor EV prototype and implemented in a low cost Xilinx Spartan 3 FPGA. Experimental verification of the control unit was provided, showing reasonable consumption metrics and illustrating the energy benefits from regenerative braking

    Assisted assignment of automotive safety requirements

    Get PDF
    ISO 26262, a functional-safety standard, uses Automotive Safety Integrity Levels (ASILs) to assign safety requirements to automotive-system elements. System designers initially assign ASILs to system-level hazards and then allocate them to elements of the refined system architecture. Through ASIL decomposition, designers can divide a function & rsquo;s safety requirements among multiple components. However, in practice, manual ASIL decomposition is difficult and produces varying results. To overcome this problem, a new tool automates ASIL allocation and decomposition. It supports the system and software engineering life cycle by enabling users to efficiently allocate safety requirements regarding systematic failures in the design of critical embedded computer systems. The tool is applicable to industries with a similar concept of safety integrity levels. © 1984-2012 IEEE
    corecore